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Abstract: This paper describes a systems engineering approach to resource planning by integrating 
mathematical modeling and constrained optimization, empirical simulation, and theoretical analysis 
techniques to generate an optimal task plan in the presence of uncertainties.  We assume one has a 
collection of tasks, each having either a known duration or a random duration defined by a probability 
distribution, and each requiring certain resources (e.g. workforce, budget, etc.) during execution.  
There can be various constraints operating among the system of tasks; for example, one particular task 
might be paired for execution with another task, and the first one might be required to be completed 
before the second can begin.  In this work we also assume, just as would be the case in any realistic 
scenario, that limits are set for resources consumed per unit of operating time, and so there cannot be 
too many tasks going on at once.  The overall goal of the planning study is considered successfully 
met when one has found an event schedule that is at least a very good local optimum, with no (or only 
minimal) violations of the constraints. 
 
We recently demonstrated a constraint modeling and optimization framework to support spacecraft 
non-deterministic event planning and sequencing [1].  We extend the results in [1] for general 
resource planning problems and introduce a number of improvements.   
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1. INTRODUCTION 
 
In [1], we demonstrated a risk analysis approach in the area of non-deterministic event schedule 
planning and sequencing.  In this paper, we improve upon this technique and apply it to the boarder 
class of resource planning and optimization problems. 
 
Using the problem formulation as discussed in [1], a plan consists of a number of tasks.  By planning, 
we mean the process of a-priori scheduling the tasks with knowledge of the planning horizon and its 
influences.  When the tasks are executed according to plan, the tasks might consume one or more 
bounded resources that are either replenishable or non-replenishable.  We further assume that there is 
a set of rules and constraints governing the required relationships and dependencies among the tasks.  
A plan is defined to be successfully executed if 1) all tasks can be accommodated within the planning 
horizon (if specified1); 2) there is no resource usage that exceeds the maximum allowable limit; and 
3) there are no violations to the set of pre-defined rules and constraints.  The challenge is to determine 
a conflict-free plan that optimizes a figure of merit (FOM) scoring the plan’s quality. 
 
Much work has been done in the area of constrained optimization algorithms to support resource 
planning applications in which the optimization problem consists of tasks with deterministic resource 
usage and time durations.  Some of these algorithms have been internally implemented in 
commercial-off-the-shelf (COTS) planning and scheduling tools (ILOG's ILOG Scheduler [2] is an 
example), and a wide variety are available as stand-alone modules for solving general optimization 
problems.  The details of these algorithms is not the emphasis of this paper, although it is worth 
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1 Not all problems require a finite planning horizon, but rather have the aim simply to complete as many tasks as 
early as possible.  The examples described in this paper mostly belong to this type, though we have solidified 
the mathematical modeling of the former type as well. 



mentioning that some algorithms are a good match to certain types of problems, while others are not; 
an analyst must always be cognizant of any algorithm's strengths and weaknesses. 
 
In our research, we have found the Matlab [3] platform an excellent tool, and we have extensively 
used its Optimization Toolbox algorithm fmincon, a modern sequential quadratic programming 
implementation, for generating interim solutions and for various systematic investigations.  This is not 
to say that this algorithm is perfectly ideal, for an algorithm that can solve all constrained optimization 
problems without difficulty does not exist.  Conceptually, with computational resources available, one 
can apply multiple constrained optimization algorithms to a given problem to ensure that at least one 
algorithm would converge and deliver a good plan. 
 
In the presence of a planning horizon, deriving an optimal schedule for a collection of events must 
take this cutoff time into account, and all constraints must reflect whether or not each involved event 
has been completed before the planning horizon lapses.  The solution of the optimization problem will 
determine the best event execution plan and schedule for all events. 
 
In this paper we address resource planning problems wherein the planner needs to schedule the 
resources in advance without complete knowledge of all the factors that influence the resource usage 
of the plan.  A plan usually consists of some tasks in which their resource usage and time durations 
are known, and other tasks in which their resource usage and time duration are non-deterministic.  
There is no guarantee that when the plan is executed, the scheduled tasks would not violate any pre-
defined rules and constraints, and the resource usages would not exceed their maximum allowable 
limits.  Also resources like workforce and schedule are desirable to be maintained at a steady level 
during a plan’s execution.  The idea of scheduling tasks into a conflict-free plan becomes obscure and 
intangible when task durations and their resource usage are not known in advance.  Resource 
allocation decisions are sometime made based on the “gut feeling” (intuition) of experienced planners.  
This might result in either not enough planning margins or the use of overly conservative margins, 
which in turn leads to: 
 
1. Conservative plan in which resources are not efficiently utilized, or 
2. Aggressive plan that fails to meet the requirements down the road.   
 
In this paper we investigate and formulate a new model-based engineering resource planning 
approach by introducing novel risk analysis techniques to resource planning optimization in the 
presence of uncertainties.  This approach is an extension and generalization of the telecommunication 
link analysis technique, which is a proven statistical estimation technique for evaluating 
communication system performance and trade-off.  The new planning approach assumes that we have 
the statistical descriptions of resource usage and task durations.  This assumption might seem 
implausible at first, but decades of experience in telecommunication link analysis indicates that 
imposing reasonable probabilistic models (e.g. worst-case models) on the link parameters that are not 
well-characterized statistically, the “Law of Large Number” still allows one to reasonably and 
accurately predict the link margin to guarantee the reliability of the link.  We apply similar techniques 
to the resource planning process to quantify the trade-off between risk and performance, as well as to 
make forward-looking choices.   
 
This rest of this paper is organized as follows: Section 2 describes the problem in some detail.  
Section 3 introduces some mathematical models of constraints and good objective functions.  Section 
4 describes an iterative approach that bounds the risk for resource planning optimization.  Section 5 
discusses in detail a number of analysis and simulation techniques.  Section 6 discusses the 
concluding remarks.   
 
2. PROBLEM DESCRIPTION 
 
In this paper, we introduce the notion of risk in terms of the probability that the plan fails to execute 
successfully, which we denote as PF.  The failure can be attributed to not meeting any one or more of 



the conditions as discussed in Section 1, namely, 1) all tasks can be accommodated within the 
planning horizon, if specified, 2) there is no resource usage that exceeds the maximum allowable limit, 
and 3) there is no violation to the set of pre-defined rules and constraints.  The goal is to determine an 
optimal plan that minimizes the resource usage that when executed, has a PF that is below a given 
tolerable level.   
 
In any general optimization problem with constraints, there is the possibility of having equality 
constraints, inequality constraints, or both simultaneously.  Further, each constraint type can be linear 
or nonlinear.  Often, problems with equality constraints are easier to solve than those with inequality 
constraints, but this statement depends completely on the forms of the functions involved. 
 
The method of Lagrange multipliers [4] would apply in the case of equality constraints, but that 
method may still not lead to a system of equations with a solution in closed form.  Further, the method 
of Lagrange multipliers always depends on one having all function derivatives available, which is 
often not the case. 
When inequality constraints are present, the problem is one involving the Karush-Kuhn-Tucker 
(KKT) system of several conditions [4], and this is significantly more complicated to apply than the 
method of Lagrange multipliers, also requires derivatives of all functions to be available, and very 
rarely leads to accessible solutions. 
 
In most of our studies, and in the topics covered in this paper specifically, modern numerical methods 
are absolutely essential; the optimization problems encountered are high-dimensional and the 
theoretical characterizations of optima are not at all practical for finding those solutions. 
 
3. MATHEMATICAL MODELS OF CONSTRAINTS AND OBJECTIVE FUNCTIONS 
 
This section outlines the mathematical models of some objective functions and constraints that are 
useful for resource planning and scheduling.   We use the following notations for this paper: Consider 
n events of interest and the planning horizon [Ts, Te], and Te-Ts ≡ T.  Let event Ei be characterized by 

the ordered pair ( i
ot , di) for 1 ≤ i ≤ N, where i

ot  and di are the start-time and duration of event Ei 

respectively.  Let i
ot  be bounded by [ iTmin , iTmax ], and let di have a probability distribution pi(di).  For 

the sake of simplicity, let the event durations di’s be independent of each other, and let pi(di) have a 
unimodal probability distribution function characterized by mi and i, where mi and i are 
(respectively) the mean and standard deviation of di.  To support constrained optimization, we choose 
fixed event durations i = mi + ii such that di ≤ i with a reasonably high degree of confidence.   
 

3.1 Objective Functions 

 
In seeking an optimal schedule, it is first necessary to define the criterion of optimality/figure of merit 
(FOM) and set up an objective function to measure the merit of any given choice of event schedule.  
Often in practice, a “good” schedule is one that accomplishes as much as possible, as soon as possible, 
subject to whatever demands and constraints are present.  This would especially be the case in 
planning for mission success in a harsh environment or where significantly reducing the probability of 
undesirable, unplanned outside influences is impossible.  From this viewpoint, a good objective 
function for this optimization problem can be given by 
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The objective function could take on other forms.  For example, it can be a weighted sum of the i
ot  

values; if we define each event Ei to have a priority weight iw , another good objective function is 

given by 
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This objective function allows one to adjust the significance of each event’s time of initiation 

independently, and even zero could be used for certain wi
 values if the associated i

ot  values were 

deemed to not be significant drivers of the solution’s quality. 
 

3.2 Constraints 

 
If the events are all independent, the problem can be as simple as populating the timeline(s) with as 
many events as possible.  But in most real-world scenarios, many events of interest are dependent on 
each other in one or more ways.  These dependencies can be expressed in the form of rules and 
constraints.  Also, the planning horizon T is usually not long enough to accommodate all events.  
Therefore, a criterion of optimality is to fit as many high-priority events as possible into the planning 
horizon without violating any constraints.  The dependencies between groups of events can give rise 
to constraints that are (sometimes) complicated; we will not attempt to describe them in much detail 
here.  The following are some examples of constraints among events.  The detailed derivations of 
these constraints can be found in [1].  For the sake of simplicity, we do not assume a finite planning 
horizon in the constraints shown here, though in [1] the full forms with a finite planning horizon are 
given. 
 
Time window: A time window-type of constraint requires that event i  falls within a specified time 

frame  ,, maxmin
ii TT  regardless of whether it occurs within the planning horizon or not.  That is 

ii
o

i TtT maxmin  i .  So if we define Tn
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max  , we have the following linear constraints:   
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Time order:  if Ei and Ej are both scheduled, Ei must start before Ej finishes for some i and j.   
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Inclusion: if Ei is scheduled, then Ej must be initiated in some chosen time interval ].,[ j
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Exclusion: if Ei is scheduled, Ej must not be initiated in some chosen time interval ].,[ j
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Forbidden Synchronic: if Ei and Ej occur, they must not overlap.   
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4. ITERATIVE APPROACH FOR RISK-BASED RESOURCE PLANNING 

OPTIMIZATION  
 



This Section presents an analysis approach that iteratively applies constrained optimization and Monte 
Carlo simulation to reach an optimal plan that is free of constraint violations with an acceptable PF.  
This approach was first suggested by William Gearhart in an internal JPL study titled “Non-
Deterministic Sequence Validation and Verification.” [5], and later extended to support risk analysis 
for mission planning in described in [1].   
 
We use the following procedure that iteratively applies constrained optimization and Monte Carlo 
simulation to reach an optimal plan as illustrated in Figure 1.   
 

 Note that this plan is intentionally “sub-optimal”.  Once a plan is generated, the start times i
ot ’s 

are fixed, regardless of how the events are executed.  That is, the start time i
ot  of event Ei is not 

dependent upon the completion time of any prior events.  This guarantees successful execution of 
the plan as long as di ≤ i for all i.   

 
Figure 1: Iterative Procedure to Find Optimal Plan 
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We applied the above iterative process to an example of a 10-event case with the following 
constraints: 
 

 Events 1 and 3 may not overlap  
 Event 1 must finish before Event 4 begins, 
 There is only one type of resource consumed, and all events consume that resource at a rate 

of one resource unit per time unit, with the maximum allowable consumption at any time to 
be 3 units at any time. 

 
Table 1 summarizes the probability distribution and its parameters of each of the 10 event durations.   
 

Table 1: Probability Distributions of Event Durations 
 

Event ID Type of 
Dist. 

Parameters Min. 
Value 

Max 
Value 



1 Uni. NA 5 7 
2 Beta α=4, β=4 1 3 
3 Norm µ=10, 

σ=.5 
NA NA 

4 Tri. Peak=4 3 5 
5 LogN µ=2, σ=.5 NA NA 
6 Uni. NA 2 5 
7 Beta α=5, β=5 3 8 
8 Uni. NA 1 3 
9 Tri. Peak=3 2 5 
10 Tri. Peak=4 2 6 

 
As in the 5-event case, events in this example are scheduled optimally, with duration of each event 
fixed at the value where each event has a 99% chance of taking that long or less to complete.  Again 
we apply FMINCON to optimize the above plan of 10 events and Figure 2 illustrates the resulting 
timeline.   
 

Figure 2: Optimal Plan 
 

 
 
Again we perform 10 Monte Carlo simulations of 5000 runs each to estimate FP .  The results are 

tabulated in Table 2 below.   
 

Table 2: Simulations of FP  

 

Simulation ID 
Probability of Schedule 
(10 Events) Failing 

1  0.0424 
2     0.0430 
3     0.0458 
4     0.0448 
5     0.0382 
6     0.0372     
7     0.0358     
8     0.0434     
9     0.0400 
10     0.0430 



Average FP      0.0414 

Upper Bound of FP      0.10 

 
5. ANALYSIS AND SIMULATION TECHNIQUES 
 
In this section, we discuss a number of analysis and simulation techniques that facilitate the risk 
analysis for the resource planning optimization process.   
 
5.1 A Simple Upper Bound of PF 

 
This upper bound was derived in [1], and we simply state the result in this paper.  Let PF,i be the 
probability that task i fails to complete within the pre-assigned time duration, ,1 ni  an upper 
bound of PF given by 
 

nFFFF PPPP ,2,1,      (8) 

 
Note that this simple upper bound of PF does not require tedious Monte Carlo simulations of the plan, 
and is just the sum of all niP iF 1,, .  Also this upper bound is independent of the optimization 

algorithm used to generate the plan. 
 
5.2 Saddle-Point Approximation of P’F of an Ensemble of Tasks in Tandem 
 
In task planning, a common situation is that there are a number of tasks that are required to execute in 
tandem.  If there are no other dependencies between any tasks in this ensemble with other tasks in the 
plan, one can merge this ensemble of tasks into one task to estimate the overall task duration and its 
resource usage.  This would simplify the downstream analysis and optimization processes.   
 
In [6], we use a variant of Saddle-Point approximation to estimate the tail probability that the sum of 
data generated from a number of instruments exceeds a given pre-planned value.  This technique can 
be used to estimate the probability of failure P’F to execute the series of tasks within the pre-assigned 
time duration.  Let z  denotes the ensemble and nxxx ,,, 21  denote the durations of n tasks in 

tandem, where ix has a pdf )( ix xf
i
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 denote the characteristic function of )(zf z .  The straightforward approach 

to evaluate )(zf z  as the convolution of )(),(),( 21 21 nxxx xfxfxf
n

 is usually impractical, as this 

involves 1n  integrations.  Another approach is to evaluate the characteristic function 
)(sz of )(zf z , which is the product of the characteristic functions )(),(),(

21
sss

nxxx    

of )(),(),( 21 21 nxxx xfxfxf
n

 .  The problem with this approach is the difficulty of inverting )(sz , 

which can be a very complicated expression, back to )(zf z .  Helstrom [7] described a variant of the 

saddle-point approximation that estimates the tail probability 


 


 dzzfq z )()( .  This method is 

useful in the case where the pdf )(zf z can be arbitrarily complicated but its characteristic function 

)(sz is known.  This approximation is particularly good for small )(q .  The key result is that the 

approximation of )(q can be expressed as a function of the characteristic function )( oz s  its first 

derivative )(' oz s , and its second derivative )("
oz s , where os is a positive root of some 



function  s , and it is shown in [7] that the root exists.  There is no need to invert )(sz .  A simpler 
proof of this approximation can be found in [8], and the main result is described below:   
 
Define the function  s  as follows:  
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It was shown [3] that the solution of   0 s exists, and is denoted by os .  By applying a Taylor 

series expansion of  s  truncated at the 2nd-order term, it can be shown that the tail probability 

)(q can be approximated by 
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It was shown in [7] that (9) suffices for most engineering applications when   is at least one standard 
deviation from the mean.  )(q is a good approximation for P’F 

 
5.3 Using Stochastic Optimization Methods to Find a Good Initial Solution 
 
In our research and experiments we have found the Matlab platform an excellent tool, and we have 
used Matlab’s Optimization Toolbox routine fmincon as a major computational engine for the non-
stochastic solving of general constrained optimization problems.  The fmincon algorithm implements 
the Sequential Quadratic Programming (SQP) method [9], finding a minimum of an objective 
function subject to linear and/or nonlinear constraints, with equality- and inequality-type constraints 
both enforceable simultaneously.  Since fmincon is set up natively as a minimization algorithm 
(optimization theory and practice is fundamentally identical whether one is minimizing or 
maximizing), the objective function we use in this problem must be designed so that increasingly 
“bad” task schedules produce increasingly large objective function values.  The optimization 
algorithm will then minimize the “badness” in the schedules, producing good schedules that meet the 
desired constraints.  Note that the SQP method for solving constrained optimization problems can 
usually reliably find locally-optimal solutions only when all functions involved are continuous, and 
the starting point for the method (also called the initial guess) is critically important to the quality of 
the final solution and the number of iterations required to find one.  In fact, for a problem of this type, 
poor initial points will often result in failure of the solver to find any feasible solution at all.  
Conversely, when the solver is started at a point that is close to a good locally-optimal solution, the 
SQP method can often zoom in to that solution quickly and accurately. 
 
To find a good initial point, we resort to software-based heuristic methods such as genetic algorithms 
(GA) and/or stochastic algorithms in the Markov Chain Monte Carlo (MCMC) class, including 
simulated annealing, Gibbs sampling, and direct random sampling from the conditional density kernel 
of the objective function given that the constraints are satisfied.  Genetic algorithms and the stochastic 
MCMC methods do not require functions that are differentiable or even continuous in order to be 
applied to the problem, and the theory of some MCMC methods (unlike that of SQP) usually gives 
them the advantage that under rather mild conditions they can converge on very high quality solutions 
when well-tuned; often even globally-optimal ones. 
The GA approach is a set of software-based heuristics that use search techniques inspired by 
evolutionary biology, such as mutation, selection, gene crossovers, and inheritance.  In a genetic 
algorithm multiple candidates in each subsequent “generation” are chosen stochastically for 
recombination, using some fitness measure/function.  This process simulates the higher probability of 
survival to reproductive maturity of the organisms (solutions) with higher fitness.  These “surviving” 



candidates are then recombined and randomly mutated to form the next generation(s), with this 
process going on repeatedly for many, many generations (iterations.)  Methods based on these 
biological processes are not provably MCMC methods and do not have the mathematical rigor of the 
MCMC algorithms, but some can still potentially be effective if they are well-tuned for the problem.  
The structural and numerical tuning required for an effective GA is always a case-by-case endeavor 
and is not easy to encapsulate in few words.  An effective genetic algorithm may have a tendency to 
find good solutions when the search space is large and those solutions are not isolated into regions 
surrounded by large amounts of infeasible space. 
 
The methods outlined above give rise to a two-step solution procedure that we have applied to these 
schedule planning problems to achieve very good solutions.  By running a hybrid scheme consisting 
of a stochastic optimization method or GA followed by a non-stochastic algorithm such as SQP, we 
can typically obtain solutions that are significantly better than either method running alone would find.  
In one recent experiment on a nontrivial test problem of the aforementioned type with a known unique 
globally-optimal solution but with non-convex constraints, a stochastic method precursor followed by 
a run of fmincon succeeded in finding that solution.   
 
In the next diagrams we show the outcome of our two-step approach to a resource planning scenario 
that involves 100 tasks, 40 constraints, and two resources of limit 4.  The resulting solution plan is 
shown in Figure 2, and the resource usage profile for resource 1 is shown in Figure 3.  Note that most 
of the tasks can be accommodated within the planning horizon, and there is no resource usage 
violation for resource 12.   

Figure 2: Optimal Plan of 100 Events 
 

100 event case, 40 constraints, 2 resources limit of 4 

 
 

 
Figure 3: Usage of Resource 1 

 

                                                 
2 There is no resource usage violation of resource 2 either, but it is not shown here.   



Resource 1 usage profile of 100 event case

 
 
6. CONCLUSION 
 
In this paper, we describe a system engineering approach for resource planning by integrating 
mathematical optimization, empirical simulation, and theoretical analysis techniques to generate an 
optimal task plan in the presence of uncertainties.  This approach introduces risk analysis techniques 
to the resource planning process to quantify the trade-off between risk and performance to allow 
planners and decision makers to make forward-looking choices.   
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